3.1467 \(\int \frac{\sec (c+d x) \tan (c+d x)}{(a+b \sin (c+d x))^2} \, dx\)

Optimal. Leaf size=133 \[ \frac{2 b \left (2 a^2+b^2\right ) \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{d \left (a^2-b^2\right )^{5/2}}+\frac{\sec (c+d x) \left (2 a^2-3 a b \sin (c+d x)+b^2\right )}{d \left (a^2-b^2\right )^2}-\frac{a \sec (c+d x)}{d \left (a^2-b^2\right ) (a+b \sin (c+d x))} \]

[Out]

(2*b*(2*a^2 + b^2)*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/((a^2 - b^2)^(5/2)*d) - (a*Sec[c + d*x])/
((a^2 - b^2)*d*(a + b*Sin[c + d*x])) + (Sec[c + d*x]*(2*a^2 + b^2 - 3*a*b*Sin[c + d*x]))/((a^2 - b^2)^2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.210772, antiderivative size = 133, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {2864, 2866, 12, 2660, 618, 204} \[ \frac{2 b \left (2 a^2+b^2\right ) \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{d \left (a^2-b^2\right )^{5/2}}+\frac{\sec (c+d x) \left (2 a^2-3 a b \sin (c+d x)+b^2\right )}{d \left (a^2-b^2\right )^2}-\frac{a \sec (c+d x)}{d \left (a^2-b^2\right ) (a+b \sin (c+d x))} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]*Tan[c + d*x])/(a + b*Sin[c + d*x])^2,x]

[Out]

(2*b*(2*a^2 + b^2)*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/((a^2 - b^2)^(5/2)*d) - (a*Sec[c + d*x])/
((a^2 - b^2)*d*(a + b*Sin[c + d*x])) + (Sec[c + d*x]*(2*a^2 + b^2 - 3*a*b*Sin[c + d*x]))/((a^2 - b^2)^2*d)

Rule 2864

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]), x_Symbol] :> -Simp[((b*c - a*d)*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m + 1))/(f*g*(a
^2 - b^2)*(m + 1)), x] + Dist[1/((a^2 - b^2)*(m + 1)), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1)*Sim
p[(a*c - b*d)*(m + 1) - (b*c - a*d)*(m + p + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x]
 && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegerQ[2*m]

Rule 2866

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> Simp[((g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m + 1)*(b*c - a*d - (a*c -
b*d)*Sin[e + f*x]))/(f*g*(a^2 - b^2)*(p + 1)), x] + Dist[1/(g^2*(a^2 - b^2)*(p + 1)), Int[(g*Cos[e + f*x])^(p
+ 2)*(a + b*Sin[e + f*x])^m*Simp[c*(a^2*(p + 2) - b^2*(m + p + 2)) + a*b*d*m + b*(a*c - b*d)*(m + p + 3)*Sin[e
 + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[a^2 - b^2, 0] && LtQ[p, -1] && IntegerQ[2*m]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sec (c+d x) \tan (c+d x)}{(a+b \sin (c+d x))^2} \, dx &=-\frac{a \sec (c+d x)}{\left (a^2-b^2\right ) d (a+b \sin (c+d x))}+\frac{\int \frac{\sec ^2(c+d x) (b-2 a \sin (c+d x))}{a+b \sin (c+d x)} \, dx}{-a^2+b^2}\\ &=-\frac{a \sec (c+d x)}{\left (a^2-b^2\right ) d (a+b \sin (c+d x))}+\frac{\sec (c+d x) \left (2 a^2+b^2-3 a b \sin (c+d x)\right )}{\left (a^2-b^2\right )^2 d}+\frac{\int \frac{2 a^2 b+b^3}{a+b \sin (c+d x)} \, dx}{\left (a^2-b^2\right )^2}\\ &=-\frac{a \sec (c+d x)}{\left (a^2-b^2\right ) d (a+b \sin (c+d x))}+\frac{\sec (c+d x) \left (2 a^2+b^2-3 a b \sin (c+d x)\right )}{\left (a^2-b^2\right )^2 d}+\frac{\left (b \left (2 a^2+b^2\right )\right ) \int \frac{1}{a+b \sin (c+d x)} \, dx}{\left (a^2-b^2\right )^2}\\ &=-\frac{a \sec (c+d x)}{\left (a^2-b^2\right ) d (a+b \sin (c+d x))}+\frac{\sec (c+d x) \left (2 a^2+b^2-3 a b \sin (c+d x)\right )}{\left (a^2-b^2\right )^2 d}+\frac{\left (2 b \left (2 a^2+b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{a+2 b x+a x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{\left (a^2-b^2\right )^2 d}\\ &=-\frac{a \sec (c+d x)}{\left (a^2-b^2\right ) d (a+b \sin (c+d x))}+\frac{\sec (c+d x) \left (2 a^2+b^2-3 a b \sin (c+d x)\right )}{\left (a^2-b^2\right )^2 d}-\frac{\left (4 b \left (2 a^2+b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-4 \left (a^2-b^2\right )-x^2} \, dx,x,2 b+2 a \tan \left (\frac{1}{2} (c+d x)\right )\right )}{\left (a^2-b^2\right )^2 d}\\ &=\frac{2 b \left (2 a^2+b^2\right ) \tan ^{-1}\left (\frac{b+a \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^2-b^2}}\right )}{\left (a^2-b^2\right )^{5/2} d}-\frac{a \sec (c+d x)}{\left (a^2-b^2\right ) d (a+b \sin (c+d x))}+\frac{\sec (c+d x) \left (2 a^2+b^2-3 a b \sin (c+d x)\right )}{\left (a^2-b^2\right )^2 d}\\ \end{align*}

Mathematica [A]  time = 0.84101, size = 169, normalized size = 1.27 \[ \frac{\frac{2 b \left (2 a^2+b^2\right ) \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{\left (a^2-b^2\right )^{5/2}}+\frac{a b^2 \cos (c+d x)}{(a-b)^2 (a+b)^2 (a+b \sin (c+d x))}+\sin \left (\frac{1}{2} (c+d x)\right ) \left (\frac{1}{(a+b)^2 \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )}-\frac{1}{(a-b)^2 \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sec[c + d*x]*Tan[c + d*x])/(a + b*Sin[c + d*x])^2,x]

[Out]

((2*b*(2*a^2 + b^2)*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(a^2 - b^2)^(5/2) + Sin[(c + d*x)/2]*(1/
((a + b)^2*(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])) - 1/((a - b)^2*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]))) + (a*
b^2*Cos[c + d*x])/((a - b)^2*(a + b)^2*(a + b*Sin[c + d*x])))/d

________________________________________________________________________________________

Maple [B]  time = 0.109, size = 280, normalized size = 2.1 \begin{align*} -{\frac{1}{d \left ( a+b \right ) ^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-1}}+2\,{\frac{{b}^{3}\tan \left ( 1/2\,dx+c/2 \right ) }{d \left ( a-b \right ) ^{2} \left ( a+b \right ) ^{2} \left ( \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a+2\,\tan \left ( 1/2\,dx+c/2 \right ) b+a \right ) }}+2\,{\frac{a{b}^{2}}{d \left ( a-b \right ) ^{2} \left ( a+b \right ) ^{2} \left ( \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a+2\,\tan \left ( 1/2\,dx+c/2 \right ) b+a \right ) }}+4\,{\frac{{a}^{2}b}{d \left ( a-b \right ) ^{2} \left ( a+b \right ) ^{2}\sqrt{{a}^{2}-{b}^{2}}}\arctan \left ( 1/2\,{\frac{2\,a\tan \left ( 1/2\,dx+c/2 \right ) +2\,b}{\sqrt{{a}^{2}-{b}^{2}}}} \right ) }+2\,{\frac{{b}^{3}}{d \left ( a-b \right ) ^{2} \left ( a+b \right ) ^{2}\sqrt{{a}^{2}-{b}^{2}}}\arctan \left ( 1/2\,{\frac{2\,a\tan \left ( 1/2\,dx+c/2 \right ) +2\,b}{\sqrt{{a}^{2}-{b}^{2}}}} \right ) }+{\frac{1}{d \left ( a-b \right ) ^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2*sin(d*x+c)/(a+b*sin(d*x+c))^2,x)

[Out]

-1/d/(a+b)^2/(tan(1/2*d*x+1/2*c)-1)+2/d*b^3/(a-b)^2/(a+b)^2/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b+a)*
tan(1/2*d*x+1/2*c)+2/d*b^2/(a-b)^2/(a+b)^2/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b+a)*a+4/d*a^2/(a-b)^2
/(a+b)^2*b/(a^2-b^2)^(1/2)*arctan(1/2*(2*a*tan(1/2*d*x+1/2*c)+2*b)/(a^2-b^2)^(1/2))+2/d*b^3/(a-b)^2/(a+b)^2/(a
^2-b^2)^(1/2)*arctan(1/2*(2*a*tan(1/2*d*x+1/2*c)+2*b)/(a^2-b^2)^(1/2))+1/d/(a-b)^2/(tan(1/2*d*x+1/2*c)+1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*sin(d*x+c)/(a+b*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.86713, size = 1238, normalized size = 9.31 \begin{align*} \left [\frac{2 \, a^{5} - 4 \, a^{3} b^{2} + 2 \, a b^{4} + 6 \,{\left (a^{3} b^{2} - a b^{4}\right )} \cos \left (d x + c\right )^{2} -{\left ({\left (2 \, a^{2} b^{2} + b^{4}\right )} \cos \left (d x + c\right ) \sin \left (d x + c\right ) +{\left (2 \, a^{3} b + a b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt{-a^{2} + b^{2}} \log \left (\frac{{\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2} + 2 \,{\left (a \cos \left (d x + c\right ) \sin \left (d x + c\right ) + b \cos \left (d x + c\right )\right )} \sqrt{-a^{2} + b^{2}}}{b^{2} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2}}\right ) - 2 \,{\left (a^{4} b - 2 \, a^{2} b^{3} + b^{5}\right )} \sin \left (d x + c\right )}{2 \,{\left ({\left (a^{6} b - 3 \, a^{4} b^{3} + 3 \, a^{2} b^{5} - b^{7}\right )} d \cos \left (d x + c\right ) \sin \left (d x + c\right ) +{\left (a^{7} - 3 \, a^{5} b^{2} + 3 \, a^{3} b^{4} - a b^{6}\right )} d \cos \left (d x + c\right )\right )}}, \frac{a^{5} - 2 \, a^{3} b^{2} + a b^{4} + 3 \,{\left (a^{3} b^{2} - a b^{4}\right )} \cos \left (d x + c\right )^{2} -{\left ({\left (2 \, a^{2} b^{2} + b^{4}\right )} \cos \left (d x + c\right ) \sin \left (d x + c\right ) +{\left (2 \, a^{3} b + a b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt{a^{2} - b^{2}} \arctan \left (-\frac{a \sin \left (d x + c\right ) + b}{\sqrt{a^{2} - b^{2}} \cos \left (d x + c\right )}\right ) -{\left (a^{4} b - 2 \, a^{2} b^{3} + b^{5}\right )} \sin \left (d x + c\right )}{{\left (a^{6} b - 3 \, a^{4} b^{3} + 3 \, a^{2} b^{5} - b^{7}\right )} d \cos \left (d x + c\right ) \sin \left (d x + c\right ) +{\left (a^{7} - 3 \, a^{5} b^{2} + 3 \, a^{3} b^{4} - a b^{6}\right )} d \cos \left (d x + c\right )}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*sin(d*x+c)/(a+b*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

[1/2*(2*a^5 - 4*a^3*b^2 + 2*a*b^4 + 6*(a^3*b^2 - a*b^4)*cos(d*x + c)^2 - ((2*a^2*b^2 + b^4)*cos(d*x + c)*sin(d
*x + c) + (2*a^3*b + a*b^3)*cos(d*x + c))*sqrt(-a^2 + b^2)*log(((2*a^2 - b^2)*cos(d*x + c)^2 - 2*a*b*sin(d*x +
 c) - a^2 - b^2 + 2*(a*cos(d*x + c)*sin(d*x + c) + b*cos(d*x + c))*sqrt(-a^2 + b^2))/(b^2*cos(d*x + c)^2 - 2*a
*b*sin(d*x + c) - a^2 - b^2)) - 2*(a^4*b - 2*a^2*b^3 + b^5)*sin(d*x + c))/((a^6*b - 3*a^4*b^3 + 3*a^2*b^5 - b^
7)*d*cos(d*x + c)*sin(d*x + c) + (a^7 - 3*a^5*b^2 + 3*a^3*b^4 - a*b^6)*d*cos(d*x + c)), (a^5 - 2*a^3*b^2 + a*b
^4 + 3*(a^3*b^2 - a*b^4)*cos(d*x + c)^2 - ((2*a^2*b^2 + b^4)*cos(d*x + c)*sin(d*x + c) + (2*a^3*b + a*b^3)*cos
(d*x + c))*sqrt(a^2 - b^2)*arctan(-(a*sin(d*x + c) + b)/(sqrt(a^2 - b^2)*cos(d*x + c))) - (a^4*b - 2*a^2*b^3 +
 b^5)*sin(d*x + c))/((a^6*b - 3*a^4*b^3 + 3*a^2*b^5 - b^7)*d*cos(d*x + c)*sin(d*x + c) + (a^7 - 3*a^5*b^2 + 3*
a^3*b^4 - a*b^6)*d*cos(d*x + c))]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin{\left (c + d x \right )} \sec ^{2}{\left (c + d x \right )}}{\left (a + b \sin{\left (c + d x \right )}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2*sin(d*x+c)/(a+b*sin(d*x+c))**2,x)

[Out]

Integral(sin(c + d*x)*sec(c + d*x)**2/(a + b*sin(c + d*x))**2, x)

________________________________________________________________________________________

Giac [A]  time = 1.23368, size = 328, normalized size = 2.47 \begin{align*} \frac{2 \,{\left (\frac{{\left (2 \, a^{2} b + b^{3}\right )}{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (a\right ) + \arctan \left (\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + b}{\sqrt{a^{2} - b^{2}}}\right )\right )}}{{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \sqrt{a^{2} - b^{2}}} + \frac{2 \, a^{2} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 4 \, a b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 3 \, b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - a^{3} - 2 \, a b^{2}}{{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} + 2 \, b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 2 \, b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - a\right )}{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )}}\right )}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*sin(d*x+c)/(a+b*sin(d*x+c))^2,x, algorithm="giac")

[Out]

2*((2*a^2*b + b^3)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(a) + arctan((a*tan(1/2*d*x + 1/2*c) + b)/sqrt(a^2 - b
^2)))/((a^4 - 2*a^2*b^2 + b^4)*sqrt(a^2 - b^2)) + (2*a^2*b*tan(1/2*d*x + 1/2*c)^3 + b^3*tan(1/2*d*x + 1/2*c)^3
 - a^3*tan(1/2*d*x + 1/2*c)^2 + 4*a*b^2*tan(1/2*d*x + 1/2*c)^2 - 3*b^3*tan(1/2*d*x + 1/2*c) - a^3 - 2*a*b^2)/(
(a*tan(1/2*d*x + 1/2*c)^4 + 2*b*tan(1/2*d*x + 1/2*c)^3 - 2*b*tan(1/2*d*x + 1/2*c) - a)*(a^4 - 2*a^2*b^2 + b^4)
))/d